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Resumo

Para esclarecer o que a formação do professor de Matemática poderia significar para o
professor de Educação Matemática, eu elaboro os seguintes temas: 1) A posição crítica da
Educação Matemática que auxilia a esclarecer a própria noção de Educação Matemática
Crítica;  2) Uma crença na racionalidade matemática presente na ciência e na tecnologia,
que inclui a afirmação de que o progresso científico é o verdadeiro motor do progresso em
todos os aspectos da vida, e que a racionalidade matemática constitui parte integral desse
progresso; 3) Matemática em Ação que nos leva à compreensão da complexidade de
contextos no âmbito em que a matemática pode estar operando; 4) Globalização e
guetorização que posicionam a Matemática em Ação como parte de uma rede tecnológica
e indicam o papel da Educação Matemática no processo da inclusão e exclusão social; 5)
Solos de investigação e horizontes futuros dos estudantes, conceitos que são importante
para a formação crítica do professor e que envolvem escolher entre diferentes meios de
aprendizagem em cooperação com os estudantes e ser sensível aos seus motivos para
aprender. Em conclusão eu argumento:  6) Crítica como um conceito aberto. Para mim,
formação se refere às possíveis funções da Educação Matemática, em particular à
relacionada ao processo de inclusão e de exclusão social. Entretanto, esses assuntos não
são definidos por meio de qualquer quadro teórico bem elaborado. Ao invés disso, eles
surgem de incertezas.
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Abstract

In order to clarify what critical professionalism could mean with respect to mathematics
teacher education, I discuss the following issues: (1) The critical position of mathematics
education which serves to clarify the very notion of critical mathematics education; (2) A
thrust in mathematical rationality in science and technology, which includes the assumption
that scientific progress is the true motor of progress in all aspects of life, and that
mathematical rationality constitutes an integral part of this progress; (3) Mathematics in
action, which brings us to realise the complix of contexts within which mathematics might
be operating; (4) Globalisation and ghettoisation, which position mathematics in actions
as part of technological networking and point to the role of mathematics education in
processes of social inclusion and exclusion; and (5) Landscapes of investigation and
students’ foregrounds, concepts that are important for critical professionalism, which
involves choosing among different learning milieu in cooperation with the students and
being sensitive to the students’ motives for learning. In conclusion, I discuss (6) critique
as an open concept. For me, critical professionalism refers to concerns about the possible
functions of mathematics education, in particular in processes of social inclusion and
exclusion. These concerns, however, are not defined through any well-elaborated theoretical
framework. Rather, they emerge from uncertainties.

Key words - Critical professionalism, critical mathematics education, mathematics teacher
education, mathematics in action, globalisation, ghettoising, landscapes of investigation,
students’ foregrounds.
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Introduction

In order to understand the possible meaning of ‘mathematics education is
critical’, let me say a few words about ‘mathematics’, ‘mathematics education’
and ‘critical’.

‘Mathematics’ can refer to a school subject and also to a field of research,
and the two things can be very different. While mathematics as a field of research
includes a vast domain of notions and theories in development, mathematics as a
school subject normally refers to a well-defined body of knowledge divided up into
bits and pieces to be taught and learned according to pre-formed criteria.
‘Mathematics’ could, however, also refer to domains of knowledge and
understanding, and not to any of its institutionalised forms in research or in school.
Thus, we find mathematics operating in many work practices. It constitutes part
of technology and design. It composes part of procedures for decision making. It
is presented in tables, diagrams, graphs; thus we can experience much mathematics
leafing through the daily newspaper.

‘Mathematics education’ can refer to activities taking place at all school
levels, from kindergarten to the university. It can refer to teaching and learning
processes in engineering, in economics, in a wide range of technical disciplines.
Mathematical teaching and learning can take place in many out-of-school situations,
often not considered to have anything to do with mathematics. We can think of
banking, accounting, computing, design, not to mention shopping and household
management.

And ‘critical’, what could that mean? Here we may remind ourselves
about a common use of ‘critical’ in medicine. The situation of a hospitalized patient
may be critical. This means that his or her situation could go ‘either way’; and it
makes a big difference which way it goes. Mathematics education – understood
in a broad sense, but also as a school subject – can be acted out in very different
ways. In this sense, I talk about mathematics education as being critical.

The critical position of mathematics education is a challenge for all teacher
education. Being aware of and facing such challenges, one way or another, is a
characteristic of what I call critical professionalism. In order to clarify what this
professionalism could mean with respect to mathematics teacher education, I
discuss the following issues: (1) The critical position of mathematics education.
This I have already referred to, but I will expand on this idea as it serves to clarify
the very notion of critical mathematics education. (2) Mathematical rationality
in science and technology. A thrust in this rationality includes the assumption
that scientific progress is the true motor of progress in all aspects of life, and that
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mathematical rationality composes an integral part of this. A blind trust in
mathematical rationality must be questioned by critical professionalism. (3)
Mathematics in action. A discussion of mathematics in action brings us to realise
the complix of contexts within which mathematics might be operating. (4)
Globalisation and ghettoisation. It is generally agreed that, in any teacher
education, it is important to consider the context of teaching and learning. By
pointing out the close connection between globalisation and ghettoisation, I try to
indicate the scope of contextual issues that critical professionalism could address.
(5) Landscapes of learning and students’ foregrounds. Any teaching and learning
process can be organised in a variety of ways. Which may be considered the most
appropriate depends on many issues. What is important for critical professionalism
is the readiness to choose a path among different learning milieu in cooperation
with the students, and being sensitive to the students’ foregrounds. (6) In conclusion
I will discuss: Critique as an open concept.

Naturally, there are more issues to be addressed in order to clarify what
critical professionalism with respect to mathematics teaching could mean. In
particular, there is much to be said about mathematics that is relevant for the
clarification of any professionalism, critical or not. Furthermore, there is a wide
range of aspects concerning the professional organisation of teachers, which is
often addressed as part of professionalism. Here, however, I concentrate on issues
through which I try to characterise critical professionalism. The discussion will to
a large extent be based on my book Educação Crítica: Incerteza, Matemática,
Responsabilidade (Skovsmose, 2007), mwhich includes a broader presentation
of concerns regarding critical education.

The critical position of mathematics education

In literature and in films, we find horrible examples of mathematics education,
often personified by a mathematics teachers who dominates the students and
punishes, through an icy irony if not physical punishment, those who do not grasp
even the simplest mathematical concept, leaving the student humiliated.

Examples like this provide a bleak picture of mathematics education, but let
us take a more careful look at what can be called the school mathematics
tradition. In this tradition, mathematics exercises play a crucial role. If we consider
research in mathematics education, little support can be found for the claim that
this is a particularly productive approach. Mathematical creativity is not cultivated
through this tradition. In fact, it might appear that some deep socioeconomic
irrationality is maintained as part of mathematics education. But how could it be
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that educational systems worldwide cling to this apparent dysfunction? Or could it
be that we may instead be dealing with a kind of learning-for-obedience, which
might fulfils the needs of the dominant economic order of the labour market?

Let us take a more careful look at a possible exercise: “A shop is offering
apples for either 0.12 Euro a piece or 2.8 Euros for 3 kilos. There are 11 apples
per kilo. Calculate how much Peter will save if he buys 15 kilos of apples instead
of buying them individually.” As with most other exercises from the school
mathematics tradition, this exercise was just formulated at a desk, without the
need to do any empirical investigation. Furthermore, the information given can be
considered to be exact. When doing the calculation, one can be sure that there are
11 apples, and exactly 11 apples, per kilo, just as we can be sure that the price is
exactly 0.12 Euro for one apple. That we are dealing with two different kinds of
truth is of no significance, and need not be addressed in any way in calculating the
solution. Any information provided in the text of an exercise can be considered
exact and absolute.

The information provided in the exercise is sufficient and necessary. Based
on the given information, it is possible to calculate the one and only correct answer.
It is unnecessary to seek additional information. Certainly there is no need for
students to leave the classroom in order to search for supplementary information.
One can also be sure that all information provided must be used, at least the
information presented in numbers. In this sense, an exercise establishes a micro-
world where all measures are exact, and where the information given is necessary
and sufficient in order to calculate the one and only correct answer.

In the process of solving the long series of exercises that has been assigned
to them, students may be learning something which does not necessarily have to
do with a deeper mathematical understanding. Exercises could be formulated as:
“Reduce the expression…!” Solve the equation …! “ “Find x, when …!” “Calculate
the area of …!” They often appear take the form of a long sequence of orders.
Could it be that the school mathematics tradition serves as an introduction to work
processes where the ability to carefully carry out prescribed behaviours of any
kind is important? Could it be that such a prescription-readiness is functional for
innumerable job-functions in our society, and that the school mathematics tradition
serves perfectly well to prepare future workers for this prescription-readiness?
Would such readiness not be functional when working as an assistant in a bank,
shop, etc? Furthermore, could it be that the school mathematics tradition forces
many students to assume they are unable to learn mathematics, and as a
consequence, that they cannot have much hope of acquiring competencies that
are valued in the labour market? And that they therefore must be prepared to
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accept low paid jobs? Could the school mathematics tradition represent a way of
thinking that facilitates submission to power?

Through such considerations, we could come to associate mathematics
education with learning-for-obediance. But what to think, then, of mathematics
education and ‘empowerment’? This expression can be interpreted in different
ways with reference to mathematics. A classic notion of intellectual
empowerment assumes that mathematics education cultivates the best part of
human thinking. Such a conception draws from a long tradition in philosophy and
epistemology. Since Plato outlined his epistemology, knowledge and certainty have
been associated; and the most splendid example of how to obtain certainty was
demonstrated through mathematics. Here mathematics establishes an insight into
eternal structures, exemplifying what sublime intellectual empowerment could
mean. A pragmatic interpretation of empowerment points out how mathematics
education can provide people with qualifications that make it possible for them to
function as citizens and secure an interesting job. Empowering a person means to
prepare him or her for participation in and enjoyment of the benefits of society.
For a majority of people, this includes the ability to operate in a functional way in
the labour market. Mathematics education, it is claimed, guarantees a good position
in the labour market for many people. Empowerment can also be thought of in
a radical and political way. There are many examples of educational practices
that involve the development of teaching and learning around projects where
mathematical insight combines with critical investigations of socio-political issues.
This brings forth the idea that empowerment through mathematics education can
mean reading the world as being open for changes.

In other words, some observations lead us to see mathematics education as
preparing students for a prescription-readiness, while others make us see
mathematics education as empowering. Mathematics education might mean
disempowerment; it might mean empowerment. Both statements, contradictory
as they might appear, can find support in a rich array of justifications. This brings
me to claim that mathematics education is critical. This education can be acted
out in radically different ways. There is no ‘essence’ in mathematics education
which ensures that it will serve particular attractive functions (although this may
be the case), nor any particular problematic function (although this may also be
the case). This education could simply go ‘either way’.

To be concerned about the critical position of mathematics education is,
for me, a characteristic of critical mathematics education. This critical position
is also a challenge for teacher education. Education of mathematics teachers
cannot be based on a simple assumption that teaching mathematics is justified
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through its intrinsic goodness. Concern regarding this multitude of possible functions
of mathematics education is an important aspect of critical professionalism among
teachers. It becomes important in all mathematics teacher education to address
the critical nature of mathematics education: its potential for empowerment as
well as for disempowerment, keeping in mind that the notion of empowerment is
impossible to delineate, as is the notion of disempowerment.

 Mathematical rationality in science and technology

The so-called Scientific Revolution launched the idea that science leads to
progress. Let me just recapitulate some elements of this revolution. Inspired by
ancient Greek philosophers, in particular the Pythagoreans, Nicolaus Copernicus
(1473-1543) presented a heliocentric world picture. This was a radical alternative
to the geocentric description provided by Ptolemy, which had been authorised by
the church as the proper picture of the universe.

Copernicus assumed that the movements of the planets were circles, but
through a careful investigation of the movement of the planet Mars, Johannes
Kepler (1571-1630) suggested that the planets were moving in ellipses, with the
sun as one of its loci. Through Kepler’s observation, mathematics obtained a
particular epistemic position. It was possible to describe exactly the orbits of the
planets through mathematics. In this way, it was assumed that mathematics
represented the structures of nature. The Pythagorean idea that everything is
numbers received a powerful re-interpretation. Mathematics could be seen as
providing the master plan for God’s creation of the world; and it should be
remembered that an unquestioned belief in God’s existence dominated the outlook
of all the people who contributed to the Scientific Revolution.  Only later did
atheism emerged as an intellectual possibility.

Galileo Galilei (1564-1642) also found that mathematics played a particular
role in the study of nature, being essential for formulating the laws of nature. He
distinguished between appearance and reality, or in other words, between primary
and secondary sense data. While the primary sense data refer to position, movement,
shape, and weight (as well as to the number of entities), the secondary data refer
to colour, smell, sound, taste and texture. According to Galilei, only the primary
qualities were significant for understanding nature, and it is precisely these qualities
can be depicted mathematically. While the secondary sense data signifies how
our senses organise our experiences, then mathematics helps to delineate the
reality behind these experiences.  In short, mathematics brings forth the essence
of nature.
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Isaac Newton (1642-1727) provided the elegant completion of the scientific
revolution by formulating the laws that govern all kinds of movements – on earth
as well as in heaven. The essential point is that we are dealing with the same laws
for both Earth and heaven; the same explanation applies for the trajectory of a
stone that is thrown and the movement of the Earth around the sun. Newton
brought the whole picture together with the notion of gravity. Any two units of
mass, no matter where they are located in the universe, are attracted to each
other by a force that is proportional to the product of the two masses and inverse
to the square of their distance. This law of gravity operates throughout the entire
universe.

The Scientific Revolution provided mathematics with a crucial position.
Mathematics ensures the basic insight into nature. It was well known that
mathematics was used to provide the beauty and correct proportions of any
architectural construction. Saint Peter’s Cathedral in Rome was just a recent
example of detailed mathematically-formulated architectural design. And now it
became evident that God, as the architect of the universe, had also used a
mathematical blue print. Mathematical insight was important for establishing insight
into God’s creations. In fact, mathematics represented an overlap between human
knowledge and God’s knowledge and wisdom. Although God would grasp things
must faster than human beings, his insight would not contradict mathematics.

The Scientific Revolution brought forward not only the idea that science
engenders progress, but also that scientific progress is the true motor of progress
in all spheres of life.  Since science-based development takes the form of
technology, then technological development became framed in a most positive
discourse:  humankind was surrounded by a hostile nature, but through technology,
nature has been tamed. It is impossible to imagine any technological innovation
without a profound amount of mathematics being brought into operation. From
being a language for understanding nature, mathematics becomes the language of
technology, whatever domain we might have in mind. The thrust in progress came
to embrace a thrust in mathematical rationality in all possible domains.

However, the simple relationship between technological development and
social progress has been questioned. Lately, the notion of the risk society, as
suggested by Ulrich Beck, emphasises that technology has enveloped humankind
in a techno-nature, which includes technology-produced risks. The creation of
atomic energy may serve as an illustration. An atomic power plant represents an
enormous source of energy, but it also represents a new form of risk structure.  A
catastrophe might not occur, but it could. Even the most unlikely catastrophes
might happen. Mathematical rationality is an indispensable resource for all these
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forms of technological constructions, initiatives, and decision making that form the
risk society. As a consequence, a mathematical rationality can also be seen as a
doubtful rationality. It is a rationality which can provide very important innovations,
but it can also bring about catastrophes. It is an uncertain rationality.

The idea that mathematics teachers should function as ambassadors of
mathematics has dominated much mathematics teacher education. However,
mathematics does not operate merely as a simple rationality of progress.
Mathematics is operating in all forms of technical disciplines. It forms part of
technological risk production. A principle element of any critical professionalism is
to distance oneself from the content to be taught and learned in order to reflect
critically on it. It must be addressed through reflections. In order to illustrate the
scope of this task, I will comment on mathematics in action.

 Mathematics in action

My discussion of mathematics in action is inspired by two ideas from the
philosophy of language: Linguistic relativism and a performative interpretation of
language. If we consider mathematic as a language – a language of science, a
language of technological rationality – these two ideas can be applied to it.

Linguistic relativism, as suggested by Sapir and Whorff, introduces the
idea that language might not only provide a description of what is seen, but also
shape a world-view. Language provides a grammar, not only for what to say and
not to say, but also of what world we will experience and not experience. Linguistic
relativism can be rephrased in Kantian terms:  what we experience is not things-
as-such, but things-for-us. What we experience and what we are able to grasp is
structured by categories, without which we would have no experiences. According
to Kant, such categories have a permanent nature identifiable only through a
transcendental philosophy, as conducted by Kant himself. However, according to
linguistic relativism, such categories are historically and culturally developed. They
are integrated in the basic grammar of language. The basic format of our life-
world is, thus, an expression of manufactured linguistic categories. This brings
language into a crucial position for understanding what we will refer to as our
reality. Linguistic categories provide a formatting of our life-world.

A performative interpretation of language was introduced by Austin and
Wittgenstein: Something is done my means of language. In Austin’s terminology,
any utterance of a statement includes three aspects:  content, force and effect.
Statements, expressions, formulations, questions, etc. include acts. Things can be
done through words.
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When we combine the two ideas, that language provides a world view,
and that it includes actions, the path is opened for discourse theory, as well as for
an investigation of mathematics in action. I have presented the idea of mathematics
in action in different ways. I do not try to provide any standardised presentation of
this type of action. Here I limit myself to citing the follow four dimensions:

 (1) Technological imagination refers to the possibility of conceptualising
technological possibilities. A prominent example of mathematics-based technological
imagination is the construction of the computer. It was not even possible to imagine
the operation of an electronic computer without mathematics at hand. Thus, the
Turing Machine provided a theoretical simulation of how a computer would operate,
and it was possible to investigate all possible details of this machine. The Turing
Machine was, however, only a mathematical construct, defined through its particular
algorithmic operations. It was not a physical, existing machine. It was possible to
analyse the capacity of the Turing Machine, and in this way to identify limits
which no computer could surpass - and to do so even before the first computer
was built. The whole conception of the Internet can also serve as an example of
what mathematics-based imagination could mean. There is no way to imagine the
functioning of the Internet by means of even an elaborated common sense;
mathematics is needed. I see technological imagination as defined through
mathematics in action.

(2)  It is possible to establish a wide range of strategies and patterns of
operation and decision making by means of mathematics. In economics, advanced
mathematical models are brought into operation. Models are used by any
government to simulate implications of economic decisions. In this way, economic
policymaking become experimental. Naturally, any big company operates with
simulation models as well. However, the result of any model-based experimentation
need not be repeated by reality. Any model contains simplifications. Some
parameters might have been ignored; some connections formulated by the equations
which constitute the model may be fictitious. Nevertheless, mathematics-based
experimentation dominates economic decision making at both the macro and micro
levels.

(3) Mathematics in action comes to form part of reality. A mathematical
model is not just a detached description of reality. One can think of the way prices
of many items are defined – think of the price of a mobile phone, a TV set, a car,
a house. In many such cases, one should not think of a price as defined by a
particular number on the price tag, but as a set of conditions for a sequence of
economic transactions. And the very identification of such conditions is based on
mathematical modelling. In such a case, a model serves not as a detached description



65

Sociedade de Estudos e Pesquisa Qualitativos

of forms of payment, but rather defines the payment. The model constitutes part
of real-life economic transactions. It defines aspects of the life conditions for, say,
a family who is struggling to pay for a car at fixed rates for a three-year period.  In
this sense, mathematics in action becomes real.

(4) Normally, actions call for reflections, as an ethical dimension seems
included in the judging of any actions; however, mathematics-based actions often
have the appearance of being neutral. Such actions could present themselves as
the only ‘objective’ things to do. Thus, a political discussion could refer to ‘facts’
provided by an economic model. Calculations could demonstrate the need for a
company to lay off workers in order to keep within the budget. Through a reference
to an underlying mathematical model, or more generally to calculations, a
neutralisation takes place, as mathematics-based actions easily become enveloped
in a language of objectivity.

Certainly many more aspects of mathematics in action could be addressed,
but the aspects presented may serve as an entry into a discussion of the
mathematics-power complex. For me, it is important that critical professionalism
in mathematics teacher education address how knowledge and power might be
operating and interacting, and this domain of social dynamics can be addressed
through particular investigations of mathematics in action. One aim is to leave
behind any blind trust in the intrinsic goodness associated with mathematical
rationality. Naturally, this does not imply that one should try to eliminate the use of
mathematics. The point is that any form of mathematics in action, like any other
form of action in general, should be the focus of critical reflections.

Globalisation and ghettoisation

‘Globalisation’ is a popular term, although far from being a popular
phenomenon. Globalisation can refer to a new order of domination and exploitation;
it could be an economic order supported by military supremacy, making it possible
to promote multinational companies in their search for raw material, cheap labour,
and new markets. Despite being multinational, such companies can be firmly settled
in the world’s richest countries. Globalisation can refer to the network of production,
where products are fabricated in poor regions by a cheap labour force and delivered
to the affluent areas. Thus, globalisation may refer to the world-wide development
of informational capitalism.

The notion of globalisation can also be guided into a more ‘human’
interpretation, leaving out the direct aspects of economic and military power. It
can be elaborated in terms of a growing concern for each other based on new



66

Sociedade de Estudos e Pesquisa Qualitativos

forms of communication. News is spread globally; we become aware of problems
all over the world. It is possible, through the Internet, to communicate observations
and opinions in ways that make it difficult for governments with dogmatic, if not
dictatorial, aspirations to maintain a firm grip on the population. The universal
stream of information means that a variety of concerns become universal. In the
same sense, people all over the world experience the same song competitions, the
same sports events, the same films, not to mention the same Big Brother.

Globalisation can mean inclusion, referring to the growing concern for the
welfare of the whole world. But globalisation also includes processes of exclusion.
Certain groups can be marginalised, and as a consequence, I see ghettoisation as
an aspect of globalisation. By ghettoisation I refer to social and economic processes
that isolate groups of people from the economic transactions of the globalised,
informational economy. Ghettoisation takes place in any society; thus, metropolises
the world over are experiencing an explosive growth in the number of favelas. So,
in my vocabulary, globalisation includes the grammar of ghettoisation.

Mathematics-in-action plays a particular role in establishing the technological
underpinnings of the network society, including both globalisation and ghettoisation.
Information and Communication Technologies (ICT) would not be successful
without mathematics in operation. ICT is a form of materialised, formal algorithms.
All kinds of strategies that define international business interactions are based on
ICT networking. This includes the accelerated operations at the stock market and
the organisation of financial transactions in all of its forms; it includes forms of
management, and of organisation of production. Any production can be described
as a network of production lines, which start where raw material is provided, and
pass through knots of production units, and terminate where the product reaches
the market. This production network can continuously be reorganised and redirected
according to the possibilities for maximising profit. This reorganisation also means
a restructuring of risks, as some areas may become dumping grounds for risky
forms of production. This relocation of certain forms of production is an integral
part of the informational economy. The whole process might appear gentle and
clean, as the whole decision-making process can be expressed in cost-benefit
analyses conducted in formal calculations. In short: mathematics-in-action is a
principal element of networking technologies.

This brings us to mathematics education. At the most general level, this
education can be interpreted as the universal preparation of young people to acquire
certain competencies, which they may need to take advantage of further career
opportunities, and that appear necessary for the proper functioning of technological
and socio-economic superstructures included in a wide variety of different practices.
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As mathematics can be seen as a universal language, mathematics education can
be seen as a universal form of socialisation of students into certain perspectives,
discourses and techniques which are imperative if we are to operate with the
present technological and economic framework as a given and not as something
that can be questioned. Mathematics education is basic to a wide range of technology
and work practices that define processes of globalisation.

I feel it is important that critical professionalism, with respect to mathematics
teacher education, include a broad perspective on the whole context of mathematics
education. The actual functioning of mathematics education depends on the context
in question. Keeping in mind that globalisation includes ghettoisation, it should not
be surprising to find mathematics education operating in processes of inclusion
and exclusion: “Mathematics … has … been cast in the role as an ‘objective’
judge, in order to decide who in the society ‘can’ and who ‘cannot’. It therefore
serves as the gate keeper to participation in the decision making processes of
society. To deny some access to participation in mathematics is then also to
determine, a priori, who will move ahead and who will stay behind.” (Volmink,
1994: 51-52) This statement by John Volmink seems to me more current than
ever. Mathematics education helps to establish a division between those who are
included in and those who are excluded from the informational society. And we
should remember ‘inclusion’ could mean ‘inclusion under certain conditions’.
Inclusion in the labour market might require not only some testified competencies
but also certain attitudes, like a prescription-readiness and learning-for-obedience.
This is a principal concern for any critical professionalism in mathematics teacher
education.

A teacher from Brazil has described to me what it means to be a teacher in
a provincial city where the majority of her students between 11 and 15 years of
age have family members in prison. They are close to a tough criminal milieu.
What could the learning of mathematics mean to such children? What are their
interests? She told me that they like copying very much. Whatever she says and
writes on the blackboard, they like to copy into their books. However, one thing
was even better than copying from the blackboard: the computer was a highly
motivating factor. The students were invited to experiment with the Cabri software
programme. They liked it, although the teacher doubted that it was the Cabri
programme, or any mathematical programme for that sake, that had caught their
interest. It might be the computer itself that had engaged the students. They could
touch a keyboard.

What could empowerment mean in this context:  allow the students to copy
from the blackboard, or let them work with the computer? What interpretation of
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empowerment is relevant in this case? I feel that we should be careful to avoid
making specific assumptions about what serves as empowerment in specific
situations. Instead, it is important to explore educational possibilities. In order to do
so, a variety of ‘milieus of learning’ might be considered.

One can imagine very different milieus of learning established in the
mathematics classroom. Some, like those defining the school mathematics tradition,
are dominated by prefabricated exercises that the students have to solve, and that
have one, and only one, correct answer. Some milieus are dominated by the teacher’s
presentation at the blackboard and students’ copying what is written there. Other
milieus can be organised around investigations of mathematical issues. Or they
may refer to mathematics in real-life situations. One can organise activities around
geometrics software. One can establish classroom milieus around group work or
project work. One can establish milieus with different forms of communication
among students, and between teacher and students.

I do not believe any particular learning milieu to be the most appropriate for
organising classroom practices. I normally suggest that teacher and students travel
between different milieus, although often I have suggested that different forms of
landscapes of investigation might provide milieus which could bring new dynamics
to the learning of mathematics and to the interaction in the classroom.30 I find that
critical professionalism should include a capacity of the teacher to operate in different
milieus of learning, and to move between such milieus, and to do so in collaboration
with students.

It is important for the learners to be involved in the process of learning.
Naturally, one can learn many things, even when one is forced to do so. However,
I find that a certain quality of learning emerges when students’ intention to learn
becomes a driving force in the process of learning. One of the ideas behind
introducing landscapes of investigation is to make it possible for students to identify
a variety of motives for learning.

This brings me to the subject of being attentive to the students’
foregrounds. In referring to a person’s foreground, I mean the opportunities that
the socio-political and the cultural situation make available for the person; not the
opportunities as they might exist in any objective form, but as they can be
experienced by the person. And certainly such opportunities need not be perceived
in any unified or consistent way. A foreground might include different and also
contradicting perspectives. Motives for learning relate to the foreground of the
students. So in order to provide motives for learning, it is important that the content,

30  For at discussion of landscapes of investigation, see Skovsmose (2000).
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one way or another, be related to the foregrounds of the students.  Thus,
meaningfulness of classroom activities, from the perspective of students, concerns
to what extent they might experience relationships between what is taking place
in the classroom and situations outside the classroom, including situations they
perceive as possibly belonging to their future. Landscapes of investigation may be
organised in such a way that they relate to students’ foregrounds.

Foregrounds are experienced but far from freely constructed. A foreground
might be ruined. Ghettoisation, which is an integral part of globalisation, is one of
the main causes for ruining the foreground of some groups of students. Think of
the foreground experienced by students from a poor neighbourhood, which might
not leave open many possibilities for escape; or of the students from that provincial
town in Brazil where the majority have family members in jail. Like anybody else,
such students might also search for motives for learning by trying to relate the
content presented to them in the classroom to the content of further work situations
they might be looking forward to. We should not assume any ready-made answer
to what this could mean. Touching a keyboard could have a particular significance.
Nevertheless, their search for meaning in classroom activities might be in vain.
Maybe they are only able to relate the classroom practices to situations they do
not even dare to imagine might belong in their foreground: studying at a university,
becoming an engineer, working in a bank. Ghettoisation could rob them of
possibilities to establish motives for learning.

Critical professionalism includes sensitivity to the students’ foregrounds.
This does not mean that such professionalism could change the realities of students.
This would be a demand that reaches far beyond any teacher professionalism,
critical or otherwise. But critical professionalism must demonstrate an effort to
relate activities in the classroom with issues that may come to occupy the students,
and which could establish the students’ intentions for learning as part of the classroom
practice.

I have been involved in different studies of students’ foregrounds, for instance
students from a favela (slum) and indigenous students in Brazil. To indigenous
people in Brazil, mathematics education might signify opportunities for moving
across cultural boundaries.  As pointed out in an interview with indigenous students,
mathematics is significant for studying medicine, and health problems are a crucial
issue in the indigenous environment.31  The relevance of mathematics for farm
work was also emphasised; it was seen as relevant for dividing up the harvest and
making business deals. In other words, different foregrounds give very different
meanings to the learning activities. Critical professionalism pays a special attention

31 See Skovsmose, Alrø and Valero, in collaboration with Silvério and Scandiuzzi (2007).
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to the relationship between the content in mathematics education and the
foregrounds of the students.

This professionalism does not presuppose any particular affluent context
for learning. It can try to establish landscapes of investigation in any possible
context.

Conclusion: Critique as an open concept

Previous formulations of critical education have found inspiration in Critical
Theory. However, I find it is important that the discussion of critical education be
established in a new format.

In Knowledge and Human Interest from 1968, Habermas pointed out
different knowledge-guiding and knowledge-constituting interests. Natural sciences
incorporate a technical interest organising knowledge from a perspective of goal-
oriented changes. The knowledge-constituting interest of the humanities aims at
bringing about understanding, while an emancipative interest constitutes knowledge
within the area of social science. However, the scientific reality of social science
was dominated by a positivist conception, implying that the social sciences were
dominated by the technical interest of the natural sciences; and as a consequence,
the social sciences came to serve the well-established political and economic order.

This discussion of knowledge-guiding interests had an impact on the
conception of education. Even though education could be thought of as a humanistic
discipline, the inspiration from Habermas introduced emancipation as a defining
element of critical education. Naturally, it also brought substantial difficulties
regarding the interpretation of what emancipation might mean within the domain
of mathematics and science education. According to Habermas’ analysis, natural
science was guided by a technical interest, of which domination is an integral part.
As mathematics represents the logic of domination, what sense can be made,
then, if any, of critical mathematics education? It could almost appear to be a
conceptual contradiction.

Critical Theory established critical thinking outside some of the principal
assumptions operating within Marxism. However, Critical Theory may nevertheless
have incorporated a variety of assumptions that were passed on into critical
education. To illustrate what I mean, we can consider the notion of emancipation.
In the original format of critical education, the notion of emancipation occupied a
prominent position. Critical education should be guided by an overall interest in
emancipation, and certainly not by a technical interest; nor would an interest in
understanding – guiding education as a humanistic discipline – be sufficient. But
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what does it mean for educational practice to be guided by an emancipative interest?
I find that critical education has suffered from too many attempts to answer these
questions in the form of simple guidelines for organising an educational practice:
teaching should be organised in projects that relate directly to the every-life of the
students, etc. Naturally, such a proposal might be useful in some situations.
However, I do not think it possible to extract guidelines from any Critical Theory
regarding how to operate with mathematics, or any topics for that matter, in the
classroom. In fact, I do not believe there is anything to be called a ‘critical theory’,
if we take ‘theory’ in any regular sense of the word.

Instead, I believe that critical mathematics education can emerge from an
uncertainty with respect to how mathematics education might operate in different
contexts. For me, critical professionalism refers to concerns about the possible
functions of mathematics education. It reflects concerns about the possible
functions of mathematics in action, of how mathematics may operate in different
technological or every-day practices. It represents concerns about overall socio-
political and economic issues as expressed in discourses about globalisation and
ghettoisation. It represents concerns about how to organise particular milieus of
learning, considering the foregrounds of the students. The concerns are not defined
through any well-elaborated theoretical framework, and there is no straightforward
notion of empowerment that could provide educational guidelines. I believe that
the meaning of the notion of ‘critique’ in ‘critical education’ and in ‘critical
mathematics education’ might be found in concerns emerging from uncertainties.
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