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Abstract: In this article, we weave historical-philosophical reflections about demonstration in 

mathematics, based on works of researchers that discuss the different philosophical perspectives on the 

topic, more specifically on geometry. We focus first on demonstration and its relationship with intuition 

and figural representations. Second, we criticize Poincaré’s conception of mathematical demonstration. 

Third, we reflect, in a non-exhaustive way, on the philosophy of demonstration in geometry, confronting 

Kant’s conceptions with the axiomatizations of the non-Euclidean geometries. In this text, we do not adopt 

a single definition that would cover all modes of scientific validation, since we admit the possibility of an 

evolution of ideas about the validity of a proposition. Not to fall into the symmetrical flaws of the 

glorification of the Ancients or even being ungrateful to them, we must start from the naive idea that the 

demonstration has a historical origin and, therefore, maintains a historical character, but we should be more 

attentive to what characterizes, in its particularity or even its uniqueness, the productions of past and present 

centuries. 
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Resumo: Tecemos neste artigo reflexões histórico-filosóficas da demonstração em matemática, 

apoiando-se em trabalhos de pesquisadores em que discutem diferentes perspectivas filosóficas da 

demonstração em matemática, mais especificamente em geometria. Focamos, em primeiro lugar a 

demonstração e sua relação com a intuição e as representações figurais. Em um segundo momento, 

apresentamos uma crítica sobre a concepção de Poincaré sobre a demonstração matemática. Na terceira 

parte, tecemos reflexões, de modo não exaustiva, sobre a filosofia da demonstração em geometria, 

confrontando as concepções Kant às axiomatizações das geometrias não-euclidianas. Neste texto, não 

adotamos uma definição única que cobriria todos os modos de validação cientifica, pois admitimos a 

possibilidade de uma evolução de ideias sobre a validade de uma proposição. Para não cair nas falhas 

simétricas da glorificação dos Antigos ou mesmo na ingratidão em relação a eles, devemos partir da ideia 

não ingênua de que a demonstração tem uma origem histórica e que, portanto, mantém um caráter histórico, 

mas deveríamos estar mais atentos ao que caracteriza em sua particularidade ou até sua singularidade, as 

produções dos séculos passados e presentes. 

 
Palavras-chave: Filosofia da demonstração; Axiomatização; Indução; Intuição, Representação. 

 

1 Introduction 

 

Demonstration occupies a central place in mathematics, as it is the method of 

proof whose systematic use characterizes this discipline among the sciences. We usually 

locate the roots of mathematical demonstration in Classical Antiquity, precisely in Greece 
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in the sixth century BC. By placing the appearance of the demonstration among Greeks, 

we are not neglecting the existence of proofs, justifications or verifications of different 

levels, for example, in Egypt, where the accuracy of calculations made by scribes was 

generally proven by verifying the result. 

The demonstration among the Greeks is a consequence of reflective thinking 

influenced by the political-social and philosophical demands that were established by the 

need to “convince” the other. The triad Socrates, Plato, and Aristotle had the function of 

supplanting, through reflective thinking, the primitive mythical belief. Human activities 

in the “” (polis = city) reached their high point of expression. Reflective thinking 

moved from the cosmological to the anthropological concern with the sophists - masters 

of rhetoric and eloquence in democratic Athens, who needed to prepare citizens to run for 

public office through free elections. 

A reflection on the demonstration can take different paths. A psychological 

investigation is certainly possible. Demonstrative speech is demanding, scrupulous, 

unlike ordinary speech, the vehicle of our conventional ideas. Certainly, rigor honours 

those whose existence is based on principles. But questioning this rigor is not useless, as 

it leads us to distinguish control or constancy of mania or obsession, a kind of rigidity 

taken to the extreme, to the point of becoming illusory (GOMBAUD, 2007). An 

epistemological and philosophical investigation is also possible. In this article, we chose 

to weave historical-philosophical reflections about the demonstration in mathematics. 

These reflections are supported by the work of researchers that discuss different 

philosophical perspectives of the demonstration in mathematics, more specifically in 

geometry. In the first part of this text, we discuss the demonstration and its relationship 

with intuition and figural representations. We rely mainly on the reflections by Bonnay 

and Dubucs (2011), Rouche (1989), and Duval (2005), among others. In the second part, 

we present Globot’s (1907) criticism of Poincaré’s theory about his concept of 

mathematical demonstration. With arguments with which we agree, this author asserts, 

among other aspects, that it is false to think that any reasoning that proceeds “from the 

private to the general” is inductive, as Poincaré thinks. In the third stage, we reflect, in a 

non-exhaustive way, on the philosophy of demonstration in geometry, confronting Kant’s 

conceptions with the axiomatizations of the non-Euclidean geometries. We rely mainly 

on Chauve’s (2006) work. 

In this text, we have not adopted a single definition that would cover all modes of 

scientific validation. Because it is important to admit that ideas on the accuracy of a 
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statement or, as the logician would say, on the validity of a proposition, may evolve 

(GOMBAUD, 2007). We agree with the author when he asserts that -not to fall into the 

symmetrical flaws of the glorification of the Ancients or even being ungrateful to them- 

we must start from the non-naive idea that the demonstration has a historical origin; 

therefore, it maintains a historical character. If we support the hypothesis that the 

representation of the world has changed considerably, as well as economic and political 

conditions, it becomes almost undeniable that Greek scholars have not demonstrated their 

propositions in the same way that professional mathematicians do today. Thus, we should 

carefully consider what characterizes the productions of past centuries in their 

particularity or even their uniqueness. 

 

2 Demonstration: the role of intuition and figural representations 

 

The philosophy of mathematics occupies an original position within the 

philosophy of science. On the one hand, the importance of mathematics in contemporary 

science is so great that, in principle, no philosophical research on science can do without 

the nature of mathematics and mathematical knowledge. For Bonnay and Dubucs (2011), 

at the horizon of the philosophy of mathematics, the philosophy of science rises 

fundamental questions, such as the possibility of completing the epistemology 

naturalization program, or the problem of the applicability of mathematics. On the other 

hand, the methodology of mathematics seems very far from the general methodology of 

science. In other words, the mathematician does not work in the laboratory; the classic 

problems of the general philosophy of science, which apply to empirical disciplines, 

referring, for example, to the question of confirmation, causality, or theoretical change, 

are not immediately transferable. 

Bonnay and Dubucs (2011) state that when it comes to the epistemology of 

mathematics, it is necessary to explain of what the activity of mathematicians consists; in 

what sense it is a theoretical activity; what its objects are; what its methods are; and how 

everything fits into a global view of science, including natural sciences. Some 

philosophers consider that mathematics studies a domain of objects that exist regardless 

of us and that there are mathematical and physical objects, even if they are not the same 

type of objects. Others believe that none of this is true and claim that mathematical objects 

are just convenient fictions, or that we construct mathematical objects, or that 

mathematics only describes very abstract properties of experience. Some consider 
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mathematical knowledge to be purely intellectual. Others think it is knowledge that is 

based on a form of intuition. Yet, others refuse to give it a special place and just want to 

talk about mathematical knowledge integrated into the whole science building. 

Concerning the empiricist conception, Bonnay and Dubus (2011) assert that 

radical empiricism that bases mathematical truths on experience does not meet the 

problem of the rationalist, who must explain, to any mathematical axiom, what makes it 

a truth of accessible reason regardless of all experience. In reducing mathematical truths 

to empirical truths, radical empiricism does not explain the apparent modal and epistemic 

properties of the mathematical truths. Mathematical truths seem necessary and knowable 

regardless of experience, unlike contingent empirical truths. Furthermore, the distance 

between mathematical notions and experience makes the empirical deduction difficult. 

Kant sought to recognize a role for intuition in mathematics, without this intuition 

making mathematical truths dependent on empirical content. In the famous texts of the 

Critique of Pure Reason and the Prolegomena, Kant (apud Bonnay and Dubucs, 2011) 

argues that mathematical propositions cannot be considered analytical propositions: there 

is more to the concept of four than the concept of the sum of two and two. For Kant, if 

we know that two and two forms four (on the decimal basis), it is because we go beyond 

the simple concept of adding two and two and resort to intuition, for example, counting 

with the fingers. Again, the whole problem is to understand how we can rely on an 

apparently empirical intuition to establish knowledge that is not empirical. 

In Kant’s terms, the problem is to understand the possibility of a priori synthetic 

judgments based on intuition and to assume the existence of a pure intuition of the forms 

of sensitivity, distinguishing two aspects of the phenomena: their form, which 

corresponds to how the phenomena are ordered in relation to others and their material, 

which corresponds to the sensation (BONNY; DUBUCS, 2011). The authors also point 

out that the forms of sensitivity, which are time and space, are given a priori; they do not 

depend on experience and are fundamental in the process of building experience. 

Arithmetic is based on pure intuition of time, while geometry is based on pure intuition 

of space. If the link between arithmetic and temporality only makes sense through the 

specificities of Kant’s elaboration of the relations between consciousness and time, the 

connection between geometry and space is obviously less problematic, and the Kantian 

philosophy of geometry has some fidelity to the practice of geometricians. 

Mathematical historians point out that Euclid’s postulates indicate possibilities of 

construction: we can always draw a circle (empirically, using a compass), we can always 
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extend a line (empirically, using a ruler). Correlatively, Euclidean geometric 

demonstrations are based on auxiliary constructions.  

For example, to demonstrate that the sum of the measures of the internal angles of 

a triangle is equal to the measure of a plane angle, we start from any triangle and draw a 

line parallel to one side, that passes through the vertex opposite that side. The 

demonstration is based on reasoning as of the initial figure, and the auxiliary constructions 

carried out. In this case, this reasoning will consist of using properties of the angles 

formed by the line drawn with the straight lines that support the other two sides of the 

triangle (in the order of the Euclid Elements demonstrations, these properties have already 

been demonstrated) (Figure 1). 

 
Figure 1: Figure illustrating the reconfiguration of the initial figure to demonstrate the property 

 

Source: Bonny and Dubucs (2011, p. 6) 

 

The authors reinforce that mathematical intuition is at stake in these constructions, 

without which the demonstrations could not be carried out. However, the contingent 

characteristics of what is constructed are not and should not be used in the demonstration; 

otherwise, a necessary geometric proposal would not have been demonstrated. Kant 

believes the use of these constructions in proofs is legitimate because only the properties 

based on what can be done in space are maintained in the demonstration, rather than the 

empirical properties of the figures. Only the pure part of the empirical intuition is relevant 

in empirical intuition that underlies mathematical reasoning. The difficulties encountered 

by Kant’s philosophy of mathematics “are proportional to its initial seductive strength. 

Those difficulties are due in part to the mysteries of the transcendental approach: what 

are the forms of sensitivity, why are they a priori, and what relationships do they have 

with the empirical constitution of the subject?” (BONNY; DUBUS, 2011, p. 69) 

Based on Rouche (1989), we present several ways of demonstrating from 

elementary geometric properties to more abstract theorems and show that the mutations 
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of the idea of proof go hand in hand with the transformation of the meaning of the forms 

of access to the meaning of the mathematical content treated. 

We considered the first case of congruence of triangles as proposed by Euclides. 

First case of congruence of triangles: Two triangles are congruent if they have 

an equal angle between equal sides, each one to each one. Euclid’s 

demonstration consists of considering two specific triangles (ABC and DEF) 

assuming B̂Â =  and DEAB =  and DFAC =  . Then, the first triangle is 

transported over the second so that A coincides with point D and that AB takes 

the direction of DE. We verify, then, successively, thanks to the hypotheses, 

that B coincides with E, that AC goes toward DF and, finally, that C coincides 

with F, which ends the demonstration (ROUCHE, 1989, p. 11, our translation) 

 

Figure 2: comparison of two triangles 

Source: Rouche (1989, p. 11) 

 

Besides the two triangles of the figure, the theorem concerns all pairs of triangles 

that satisfy the assumptions. Therefore, if we find two triangles that we will know for 

whatever reason (and usually after a demonstration) that satisfy the hypotheses, we will 

see that they are congruent without having to overlap them. Thus, the theorem takes 

thought far beyond the limits of here and now, towards an infinity of triangles of all sizes 

and proportions.  

For us, according to Rouche (1989) and Duval (2005), the two triangles play the 

role of representatives of the possible triangles. We are still a long way from mathematical 

thinking based on arbitrary symbols because representatives have a close relationship 

with the objects represented, which implies the possibility of easily passing from one to 

the other. The thought can engage without obstruction towards the object, imagining other 

cases in large numbers (ROUCHE, 1989). But it is, in fact, a possibility, not a spontaneous 

and constant process. It often happens that this possibility does not reach awareness and 

that, especially for beginners, attention remains entirely focused on the figure that 

accompanies the statement. As far as possible, in no way it gets in the way, the path of 

other likely figures is of little interest. No particular figure has a special value, and the 

possibility of always imagining other figures is important, without encountering 

obstacles. This possibility constitutes the theorem. 
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We analyzed, from another example taken from Rouche (1989), the circumstances 

that lead to reasoning, based on immediate thinking, given the following proposition. 

Proposition 2: The perpendicular bisector of a segment (that is, the line 

perpendicular to the segment in its middle) is the place of the points equidistant from its 

ends and vice versa. 

 
Figure 3: A point in the perpendicular bisector of 

AB segment 

Source: Adapted from Rouche (1989, p. 13) 

Figure 4: Equidistance of the points of the 

perpendicular bisector of AB segment 

 

Source: Adapted from Rouche (1989, p. 13) 

  

The imagination embraces with a movement all the other figures that we could 

make from other points of the perpendicular bisector (Fig. 3) and all those that can be 

construct in the same way in other segments. Obviously, thought cannot go through all 

those figures, since they are infinite, but, when embarking on a journey, it effectively gets 

convinced that nothing would prevent it from going through new ones indefinitely. It 

potentially has access to every imaginable figure.  

Rouche (1989) notes that a double condition seems necessary and sufficient for a 

proposition to be experienced as evident:  

a) to discern at sight the implementation of a particular case;  

b) thought is involved in the imagination without any problems in all possible 

cases.  

The evidence subject to these two conditions is that which refers to the considered 

proposal that encompasses all cases that satisfy the hypotheses. When the attention does 

not go beyond the case considered, the feeling of obviousness is only due to condition a). 

In the context of geometry, cases are identified with figures.  

Proposition 2 affirms the necessary concomitance of two properties: the one that 

defines the perpendicular bisector, and the equidistance property. 

The author asserts that the inductions mentioned above do not refer to exact 

productions of the same figure, but, on the contrary, to all possible variants of one or 
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another figure actually considered. Looking closely at Poincaré’s view, induction does 

not lead to describing any quite new experience. It only expresses confidence in the 

possibility of reproducing exactly an experience, without changing anything. Our 

induction examples, on the contrary, provide information on a multitude of substantially 

different cases. 

In this perspective, Globot (1907) asserts that geometric reasoning is never purely 

contemplative; it is active and constructive, and it is the constructive activity of the mind 

that produces a new result. A purely contemplative thought could not discover in its object 

anything but that same object. Moving from one property to another could result in the 

discovery of more unique and restricted propositions. General propositions, that are only 

truths when we just look at them, become rules when active and operational thinking that 

takes these truths as practical rules of our action takes place. 

In the next topic, we provide reflections and criticisms about Poincaré’s theory of 

mathematical demonstration. 

 

3 The mathematical demonstration: Criticism of Poincaré’s theory 

 

To reflect on the concept of demonstration according to Poincaré, we rely on 

Globot (1907), who claims that  

logic is closely linked, on the one hand, to the theory of knowledge because 

we cannot discover the knowledge base without knowing exactly what must 

be constructed; on the other hand, to the psychology of the concept, to 

judgment and reasoning because, if it is possible to distinguish precisely the 

logical problem from the psychological problem, it is not possible to separate 

them (p. 265, our translation). 

 

The author asserts that deductive reasoning is generally accepted as a syllogism, 

which seems to be considered by logicians as the only form of deductive reasoning. That 

mathematical sciences are deductive is also accepted. However, no mathematical 

demonstration is reduced to a compound syllogism. In this perspective, Globot (1907) 

states that: 

The chain of theorems leads to increasingly general propositions; algebra is 

more general than arithmetic, infinitesimal calculus is a generalization of 

elementary algebra, the geometry of the moderns is more general than the 

geometry of the ancients. Syllogism cannot be an instrument of generalization. 

Its fundamental rule, the Dictum de omni et nullo, prohibits this (p. 265, our 

translation). 

 

He also states that the condition of validity of any syllogism is that the 

consequence must be contained in the principles. However, in mathematical 

demonstration, the consequence results from but is not contained in the principles. We 
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cannot say that in an isosceles triangle, the congruence of the angles is contained in the 

congruence of the sides, nor the equality of the sides in the equality of the angles. The 

syllogism mechanism rests solely on the inclusion and exclusion relationships of the 

terms. Any mathematical demonstration establishes a necessary dependency relationship 

between heterogeneous properties (GLOBOT, 1907). 

The syllogism is in any mathematical demonstration and has a well-defined 

function. It is used to apply a previously accepted principle or proposition to the case 

under consideration. “But it is never all reasoning. No demonstration consists of 

extracting a special proposition from a more general proposition that contains it” 

(GLOBOT, 1907, p. 266, our translation). 

Globot (1907) also reinforces that the mathematician endeavors to arrive by the 

shortest possible route to the highest possible generalities, from those to even more 

general ones. They rarely retrace their steps; they do not enjoy making an inventory of all 

the partial truths contained in a more extensive truth unless they need to bring a 

remarkable property, which is generally called a corollary. It consists of formulating 

separately, because we will need it later, a property that, established during the 

demonstration or contained implicitly in the conclusion, does not need to be demonstrated 

separately. So, for the author,  

mathematical reasoning ranges from an admitted property to a heterogeneous 

property (in the isosceles triangle, from equality of sides to equality of angles) 

or from a special property to a general property (from the sum of the measures 

of the internal angles of a triangle to the sum of the angles of the polygon), 

never from general property to special property (GLOBOT, 1907, p. 266). 

 

The author states that there is an advantage in drawing pure, more general, more 

abstract relations from the spatial intuitions in which we first consider them, and in 

deriving them from each other in an independent way to look at the figures. 

Poincaré finds the reasoning by recurrence in the demonstration of the addition 

and multiplication rules, that is, the most elementary rules of arithmetic or algebraic 

calculation. Poincaré (apud GLOBOT, 1907) asserts that  

This calculation is an instrument of transformation that assists in many diverse 

combinations than simple syllogism; but it is still a purely analytical instrument 

and unable to teach us anything new. If mathematics had no others, it would 

be immediately blocked in its development; but it resorts to the same process 

again, that is, to reason by recurrence and can continue marching forward. - At 

each step, if we look closely, we find this way of reasoning in the simple form 

we have just given it, or in a more or less modified way. So this is the 

mathematical reasoning par excellence...” (p. 268, our translation). 
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We do not find reasoning by recurrence in all mathematical demonstrations. The 

author claims that Poincaré seems to implicitly recognize that this type of reasoning only 

accidentally intervenes in algebra, but algebra is purely “analytical,” and only operates 

“transformations. 

Reasoning by recurrence plays an essential role in algebra, which allowed it to 

expand its domain; it is present at the beginning of the infinitesimal analysis. It intervenes 

whenever mathematics crosses a trench and attaches new territory (GLOBOT, 1907).  

While it is limited to exploring the domain conquered, without expanding it, it 

does not make use of it, but neither does it advance, it transforms. I believe that 

Poincaré is mistaken. Reasoning by recurrence is a very special and 

recognizable way; there are real and general algebra demonstration that cannot 

be reduced to this. Algebraic transformations can be used to demonstrate new 

propositions; they do not consist of stepping on the spot; they advance (p. 269). 

 

Globot (19007) advances two reasons over Poincaré’s thesis that recurrence is not 

the only mode of general and generalizing demonstration. The first reason is that this type 

of reasoning applies only to the series of integers. Mathematics has become increasingly 

arithmeticized. Poincaré builds continuity, the dimensions of space, reduces geometry to 

the calculation of functions, and states that: “the geometer makes geometry with 

extension, as is done with chalk; therefore, we must be careful to give much importance 

to incidents that generally have nothing more than the whiteness of the chalk” 

(POINCARÉ, 1906, apud GLOBOT, 1907, p. 269, our translation). 

The second reason is even more decisive, says Globot, because the reasoning by 

recurrence contains a demonstration that this process hardly takes into account. The 

author states that the geometric demonstration is generalized in two ways: first, every 

demonstration advances from the singular to the general and consists of establishing a 

necessary relationship between two heterogeneous properties, which cannot be done by 

any syllogism or by any composition of syllogisms. Second, some demonstrations go 

from the special toward the general, which also cannot be explained by syllogistic 

reasoning. For example, to demonstrate that in an isosceles triangle the angles opposite 

to the congruent sides have the same measure, we exfoliate the triangle, detach it from 

itself by thought, and reapply it, turning it upside down, in the line that we suppose to 

have left on the board. 

In this perspective, the Gestalt laws made it possible to theorize, scientifically, the 

visual reading system that allows us to analyze and interpret objects, considering that 

some forms can facilitate or hinder their perception, depending on the factors of 

composition in this way. Duval (2012a) shows four different ways of apprehending a 
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figure: the perceptive (immediate visual recognition of the shape), the operative 

(reconfiguration operation), the discursive (indications contained in the statement) and 

the sequential (indications to construct a figure). They are independent of each other, but 

the resolution of a problem requires the transition from one type to another type of 

apprehension. 

Duval (2005) asserts that to see a figure, in geometry, it is necessary to dissociate 

what refers to size and, therefore, what depends on the scale of magnitude in which the 

act of seeing occurs, and what refers to the discriminated forms, that are independent of 

the scale. The relationship with the figures, that is, the way of seeing what they show, 

concerns the discrimination of shapes and not the size or changes in the scale of size. It 

is Poincaré’s (1963) perspective as regards “geometric intuition:” 

When in a metric geometry theorem, we appeal to this intuition, it is because 

it is impossible to study the metric properties of a figure without considering 

its qualitative properties, i.e., say those that are the appropriate object of Situs 

Analysis.... it is to promote this intuition that the geometer needs to draw the 

figures, or at least represent them mentally. However, if these metric or 

projective properties of those figures are used cheaply, focusing only on their 

purely qualitative properties, it is because this is where geometric intuition 

really intervenes (p. 134-135, apud DUVAL, 2005, p. 6-7, our translation). 

 

The discrimination of those “purely qualitative properties” is one of the most 

critical aspects of the process of demonstration in geometry. One of the problems is the 

perception that, according to Duval (2005), it works without any dissociation between 

magnitude and visual discrimination of forms, and, above all, it imposes a common way 

of seeing that goes against the two ways of seeing figures that are requested by geometric 

demonstrations: one centered on the possibility or not of constructing the figures with the 

help of instruments; and the other, centered on their heuristic enrichment to reveal shapes 

that are not those that the eye sees in them. We agree with the author when he asserts that 

it is difficult to transpose the transition from the usual functioning of the perception of 

forms to those two ways of seeing, especially the second. However, they are only the 

superficial manifestation of a third way, which constitutes the cognitive mechanism of 

mathematical visualization: the dimensional deconstruction of forms (DUVAL, 2005). In 

this perspective, the author reinforces that: 

The construction of figures, or their heuristic use, only makes sense to the 

extent that they are part of this functioning of mathematical visualization 

because, with this third way of seeing, space is no longer approached from the 

perspective of magnitudes and changing scales of magnitudes, nor under the 

discriminatory aspect of topological and similar properties of forms. The way 

to see a figure is done according to its dimensions and the change in the number 
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of its dimensions. The altered number of dimensions is at the center of the 

geometric appearance in the figures (p. 7, our translation). 

 

Chart 1 shows four ways Duval  (2005) presents of looking at a figure. 

 
Chart 1: Four classic entries in geometry 

 BOTANIST SURVEYOR BUILDER INVENTOR 

1 Type of 

operation on 

VISUAL FORMS, 

required by the 

activity proposed. 

Recognizing 

shapes from the 

visual qualities 

of an outline: A 

particular 

shape is 

privileged as 

TYPICAL.  

Measuring the 

sides of a surface: 

on an AREA or 

on a DRAWING 

(magnitude scale 

variation and 

then 

measurement 

procedure).  

Decomposing a 

shape into 

constructable 

tracings with the 

help of an 

instrument (often) 

needs passing 

through 

AUXILIARY 

TRACINGS that 

do not belong to 

the “final” figure.  

Transform some 

shapes into others. 

To begin these 

transformations, it is 

necessary to add the 

final figure 

REORGANIZING 

TRACES. 

2. How 

GEOMETRIC 

PROPERTIES  

are mobilized in 

relation to this 

type of operation.  

No links between 

different 

properties (no 

mathematical 

definition 

possible) 

Properties are the 

choice criteria to 

take 

measurements. 

They are only 

useful if they lead 

to a formula that 

allows a 

calculation  

As setbacks for a 

construction 

order.  

Some properties 

are obtained by a 

single tracing 

operation, while 

others require 

several operations 

Implicitly by 

reference to a more 

complex network (a 

network of lines for 

plane geometry or a 

network of plane 

intersections...) than 

the initial figure. 

Source: Duval (2005, p. 9, our translation)  

Through analyzing the four ways of looking at a figure, we infer that the botanist 

gaze allows us to recognize the contour of shapes. It is the most immediate and evident 

entry; it refers to a “qualitative look.” The author states that it concerns “[...] observing 

differences between two shapes that have certain similarities (a square and a rectangle) 

and noticing some similarities between different shapes (a square and a parallelogram)” 

(DUVAL, 2005, p. 10). That is, the properties that stand out in the figures are the visual 

contour characteristics. Bearing in mind that the action of recognizing shapes can be done 

in another way, it is not configured as a geometric activity (DUVAL, 2005).  

The surveyor’s gaze, as we will see in this study, played an essential role in the 

historical trajectory of geometry, as we find through the many examples in Greek 

geometry. In this way of looking, the activity of making measurements on a terrain 

surface and passing them to the paper plane is emphasized. Geometric properties are 

mobilized around measures that are only useful if they lead to some calculation procedure. 

Therefore, it is a matter of correlating two scales of magnitudes. “Now, the fact of putting 

in correspondence is nothing natural or evident, as there is no common procedure to 
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measure the real distances on the terrain and to measure the widths of the traces of a 

drawing” (DUVAL, 2005, p. 10). 

The dimensional deconstruction is the central axis of the geometry visualization 

process. The dimensional awareness of shapes and their discursive operations allow 

visualization and discourse to be in synergy (DUVAL, 2011). The passage between 

visualization and discourse is closely connected to a dimensional change of shapes to 

enable us to recognize the geometric objects in each of the two registers, remembering 

that each semiotic representation for the same geometric object can address different 

contents (DUVAL, 2005). 

Figure 5: Isosceles triangle 

 

Source: author’s construction using Geogebra 

 

From the dimensional deconstruction of figure 5, we observe that the angle (𝐴𝐶�̂�), 

between the congruent sides (𝐴𝐶̅̅ ̅̅  𝑒 𝐶𝐵̅̅ ̅̅ ), necessarily coincides with its own trace, that each 

side of this angle coincides with the trace on the other side that is congruent to it. The 

coincidence of the third side results from the principle that two points can only be joined 

by a single straight line; it is the only syllogism involved in the demonstration. Finally, 

we note that each of the angles opposite the congruent sides coincides with the trace of 

the other. As we can see, the demonstration consisted of an operation and observation of 

the result obtained (GLOBOT, 1907). 

Actually, this process, according to Duval (1995, apud  ALMOULOUD et al., 2004), 

involves three types of cognitive processes, which perform specific epistemological 

functions: 

• the visualization process for heuristic exploration of a complex situation; 

• the construction of configurations, which can be worked as a model in which the 

actions performed represented and the results observed are linked to the 

mathematical objects represented; 

• reasoning, which is the process that leads to proof and explanation. 
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Duval (1995, apud ALMOULOUD et al., 2004, p. 126) states that “those 

processes are intertwined, and their synergy is cognitively necessary for proficiency in 

Geometry.” However, they can be carried out independently. For example, the 

construction can lead to visualization, but it does not depend on the construction. 

Visualization, on the other hand, can contribute to reasoning, as well as lead to making 

mistakes (DUVAL, 1995). 

To arrive at the expected result in the example in figure 5, we articulated the 

perceptual, operative, and discursive apprehensions. Perceptual apprehension allows us 

to identify or recognize, at first glance, a shape or an object, whether in a 2D or 3D. Duval 

(1994, p. 124) asserts that “This is done by cognitive processing carried out automatically, 

therefore unconsciously. That is why the shape of a figure, or those that compose it, is 

recognized from the first time, and that recognition remains stable.” Depending on their 

dimension, those elements can be traces (following the law of closure and continuity), 

points (discrete or continuous), or zones (characterized by their contour). 

The operative apprehension of figures is the perception of the organization and 

reorganization of the set of forms of a figure that lead to the performance of various 

reconfiguration operations through physical or mental manipulations on the whole or part 

of the figure. It is centered on the possible modifications of an initial figure and the 

possible reorganizations of these modifications. For each type of modification, there are 

several possible operations” (DUVAL, 2012b, p. 125). 

The discursive apprehension of a figure “[...] is equivalent to immerse, according 

to the indications of a statement, a particular geometric figure in a semantic network, 

which is, at the same time, more complex and more stable” (DUVAL, 2012b, p. 135). 

This, because the figure alone cannot represent all its characteristics, it needs a verbal 

indication to anchor the figure as a representation of the mathematical object. However, 

a figure’s privilege is perceived over language. We recognize that the representation of 

an image is obvious and it is possible to make all statements about it understandable, that 

is, “we postulate that the articulation between ‘image’ and ‘language’ would occur 

spontaneously” (DUVAL, 2003, p. 39), reinforcing the idea that the figure alone is 

capable of leading to the interpretation of a situation. 

What was done in the example in figure 5 was not a manual but a mental operation, 

and it is not a physical - as could be done with measuring instruments- but a logical 

observation. In intuitive geometry, all geometric demonstrations are done based on 

examples. It is just that we demonstrate by operating; however, an operation 
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(construction, superposition, rotation, etc.) can only be executed, even mentally, and the 

result of an operation can be observed in the same way, only in a singular figure 

(GLOBOT, 1907). 

The author reinforces that this result, although observed, is necessary, and the 

operation was carried out according to the rules. The rules of the operation are, initially, 

the general definitions and the special hypotheses that determine the question, i.e., the 

conventions that the mind has made with itself and with which it is connected, and 

whenever there are reasons to resort to the propositions previously established. The result 

observed is necessary to the extent that the application of the rules determines it. 

It remains contingent and modifiable, as it depends on the singularities of the 

example chosen, and that is why it is general. When reasoning about a figure, the 

researcher always keeps in mind the distinction between the properties of that figure 

formally stated in the hypothesis and those that, if not specified, remain indefinitely 

variable. The operation,  

which is regulated only by the first, can be repeated, with the same result, in 

any different figure that performs the hypothesis, whatever its unique 

properties. The operation that consists of detaching the isosceles triangle from 

the table plane and reapplying it in its own trace can always be repeated and 

will always give the same result, the coincidence of the opposite angles to the 

equal sides, in any triangle, because I took as a rule for this operation the 

equality of two sides, not the absolute value, nor, except for this assumption, 

the relative value of the sides or the angles (GLOBOT, 1907, p. 372, our 

translation). 

 

The same author asserts that it may seem surprising that a finding is inherent 

because when it is an empirical observation, the observing scientist, the physicist, for 

example, records the manifestations of forces that are foreign to them. Nature operates 

before their eyes, according to rules or laws which they ignore and which are precisely 

the object of “research.” The surveyor, on the contrary, operates according to the rules 

he/she knows, of which they constantly feels the restriction that always guides him/her 

and often resists him/her; and, in fact, he/she never has any other guarantee of the need 

for his/her results other than the awareness of having observed them. 

Based on Globot (1907), we affirm that, in mathematical reasoning, generality is 

a consequence of necessity, an essential character of deductive reasoning, which consists, 

first, of realizing that a relationship is necessary, therefore, general. Inductive reasoning, 

on the contrary, consists of establishing a series of operations, at the end of which we 

observe facts and empirical findings from which we infer that a relationship is constant 

and necessary, since chance and contingency cannot produce perfect uniformity. But this 
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need “is only inferred; it remains hidden, illusory, not perceived by the mind, as long as 

it sticks to inductive reasoning” (GLOBOT, 1907, p. 172). 

The author stresses that it is false to believe that all deductive reasoning proceeds 

“from the general to the particular;”  

it is false that any reasoning that proceeds “from the particular to the general” 

is inductive. If we call induction any reasoning that generalizes, there will be 

nothing left that we can call deduction, because any real reasoning makes us 

acquire new knowledge. Syllogism is not, strictly speaking, a reasoning, but a 

part of reasoning, a time, an articulation of reasoning. When, appealing to a 

general principle, we feel the need to make it, so to speak, the currency, retain 

only a part of it, what concerns the object on which we are focused, is that we 

want to go further and, using the principle, bring a new consequence, increase 

our knowledge. The reasoning is not complete until the mind, taking the 

principle as specialized as the rule of its operation, has built a new property 

(GLOBOT, 1907, p. 273, our translation). 

 

We agree with the author when he states that the geometric demonstration also 

generalizes in another way, going from the special to the general. It often happens that a 

proposition cannot be demonstrated immediately in its general form; we first demonstrate 

this for a special privileged case, for which we have reduced the general case. The special 

privileged case has this advantage, because of its special properties, it allows 

constructions or operations that cannot be performed in the general case. So, first, we 

demonstrate that the sum of the measures of the internal angles of a triangle is equal to 

180º because a given construction (Figure 1) that assimilates the angles of the triangle to 

adjacent angles on one side of a line is possible. 

The property demonstrated for the special privileged case cannot be immediately 

extended to the general case, since the demonstration process took some special property 

of the privileged case as a rule. A demonstration is necessary, but the theory explained 

above clarifies this perfectly, because this demonstration always consists in constructing 

the general case from the special case. Thus, in the example just mentioned, the sum of 

the measures of the angles of a polygon is constructed with the sum of the measures of 

all the angles of all the triangles into which it was decomposed (Figure 6). 
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Figure 6: Hexagon divided into six triangles 

 

Source: Own construction using Geogebra 

 

Another famous example, taken from Chauve (2006), is the duplication of the square, 

whose demonstration was made by Pythagoras, and which Plato staged in Menon. To 

demonstrate that the square which has as its side the diagonal AC of another ABCD 

square will have double the surface of the latter, we constructed the figure. Then, we 

counted the congruent triangles (Figure 7) to verify that there are two in the square 

provided (ABC and ACD) and four in the square constructed (ABC, ABA´, A´BC´ and 

C´BC). 

Figure 7: Duplicating a square 

 

Source: Chauve (2006, p. 3) 

 

Chauve (2006) states that in this rudimentary form, the demonstration consists of 

assembling something in a figure. However, it is not a figure that would be found among 

the things that can be observed. The figure we are showing is a figure that we have built, 

and that does not appear only in this construction. And showing something in this figure 

is not just looking at it, no matter how carefully, to try to perceive it, but reasoning with 

attention, in particular, to establish equality between its elements. 
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The author asserts that, at the beginning of geometry, the demonstration consists 

of showing not by observing and looking, but by constructing a figure to be able to reason 

about the construction. The geometric object is not what we make appear visually, but a 

figure that we represent in the mind and that is like the background of the figure that we 

draw (CHAUVE, 2006; DUVAL, 2005). Platon (République VI, 510 b-e, apud Chauve, 

2006) said that this object is “supposed” and that, for example, under the square we draw, 

there is the “square itself.” When appearing in the field of geometry, the notion of 

demonstration requires that we distinguish and separate mathematical things that we 

design and form, through thought, concrete and “visible” things that we can observe 

around us. From the beginning, the notion of demonstration is supportive of a 

philosophical conception of the nature of mathematical things, so to touch that notion is 

to modify that conception. And that is just what will happen. 

The examples presented are all from Euclidean geometry. However,  

Poincaré will tell me, without a doubt, that his theory correctly highlights the 

imperfection of this intuitive geometry, which painfully reaches general 

propositions and only relatively general ones. He made a constant appeal to 

intuition and never freed himself from considering singular figures. It needs a 

blackboard and chalk, not like algebra, to write its reasoning, but to make the 

very objects on which it reasons. It follows that it can proceed only through 

observations, then generalize as it can. Thus, like analysis, it never succeeds in 

establishing purely abstract relationships, independent of all intuition, 

empirical or not, and which remain true in themselves, even when we have no 

intuition to which we can apply them (GLOBOT, 1907, p. 274, our translation). 
 

Poincaré would say, according to Globot (1907), that the procedure above would 

result in an observation procedure; then, eventually, generalizations. Thus, like analysis, 

it never succeeds in establishing purely abstract relationships, independent of all intuition, 

empirical or not, and which remain true in themselves, even when we have no intuition 

to which we can apply them. The true mathematician would replace geometry by 

calculating functions of three independent variables and since nothing compels him/her - 

if not for the sake of convenience- to limit himself/herself to that number of three 

independent variables, he/she would conceive Euclidean geometry as a special case of “a 

general geometry.” 

Thanks to algebraic analysis, she extracts the abstract relations from the spatial 

intuitions in which they were first considered and deduces them directly from each other. 

Undoubtedly, intuitive geometry retains all its pedagogical value, since beginners must 

redo “quickly, but without skipping steps, the path taken slowly by the founders of 

science” (GLOBOT, 1907, 275).  
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The author further asserts (about what Poincaré would say) that the trained 

mathematician is no longer satisfied with these mental operations, which, without needing 

to be performed manually, are, however, the closest to manual operations and logical 

observations that, without being empirical observations, cannot do without intuition. 

Analytical methods are both more abstract, more general, and more rigorous. Intuitive 

geometry is just a mathematical science. However, all branches of pure mathematics are 

reduced to the calculation of integers, and the rules for calculating the integers, like the 

rules for each of their successive extensions, are demonstrated by the recurrence method. 

This is, therefore, the only real and purely mathematical reasoning.  

For Globot (1907, 275, our translation) 

the theory above applies exactly to all arithmetic, algebra and infinitesimal 

analysis demonstrations, while reasoning by induction, unless a disguise hides 

it, it is a special and relatively rare mode of demonstration; I also reply that it 

applies to reasoning by the induction itself and that it is necessary to explain 

it. 

 

He asserts that we are mistaken when we say that algebraic calculus, consisting of 

simple transformations, is purely analytical and does not introduce anything new. Algebra 

has no other object than the form of algebraic expressions, and its demonstrations cannot 

relate to anything else. All algebra propositions state that a given form necessarily results 

in another form. To establish those necessary relations between heterogeneous forms, we 

did not discover that the second was contained in the first (if that were the case, there 

would be no demonstration to be done, but a simple application, in other words, no 

reasoning, but a simple syllogism). The demonstration consists of creating the shape from 

the first. Therefore, the algebraic calculus is precisely comparable to the geometric 

construction. The author reinforces that 

We are very inclined to see transformations in formulas and geometric 

constructions as incidental operations that prepare and precede reasoning or 

that follow and result from it; they are its constituent and essential elements. 

The constructive operation brings a new result, the rule guarantees that it is 

necessary. There is no proposition of arithmetic or algebra that is not 

demonstrated through an operation or a series of operations. Any proposition 

to be demonstrated consists of a hypothesis and a consequence; the 

consequence is not identical to the hypothesis, nor is it contained in the 

hypothesis; it is, therefore, heterogeneous; the only way to demonstrate what 

it does is to construct the consequence from the hypothesis (GLOBOT, 1907, 

p. 275-276, our translation). 
 

It states that the knowledge of the result of an arithmetic or algebraic operation is 

a logical finding; after getting the successive portions of a sum, of a difference, of a 

product, of a quotient one by one, we see the result “found” by a “reading.” We believe 

that the result obtained is necessary because we are convinced that we operate according 
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to the rules, which are: 1st, the logical conventions, that is, definitions and hypotheses; 

2nd, the general propositions previously demonstrated. But the result is necessary only to 

the extent that it was determined by the rules. About the unique properties, not specified 

by the premises, quantities, or forms in which we operate, the result remains entirely 

flexible and indefinitely changeable. Like the surveyor, the analyst discerns effortlessly 

and painlessly in his/her formulas what is necessary and what is not. In this perspective, 

Globot (1907) reinforces his argument based on the following example: 

To demonstrate that the square of the sum of two quantities is equal to the sum 

of the squares of each of them, plus the double of their product, we performed 

the operation (𝑎 + 𝑏)2; we observed the form of the result; and, as we took as 

a rule, doing the operation, the form of the expression a + b, and in no way the 

value or the nature of the two quantities a and b, we know that, whatever these 

two quantities are, numerical or not, known or unknown, commensurable or 

immeasurable, in any way they are composed, we will always have a result in 

the same form (p.276). 

 

He concluded that the arithmetic, algebraic, and analytical demonstration is, 

therefore, of the same nature as the geometric demonstration. Among all possible 

hypotheses, the mathematician chooses those that will lead him/her to practically usable 

results. Mathematics is not the knowledge of any part of nature. Still, it aims to provide 

the natural sciences with a flexible and rigorous language, suitable for expressing the 

relationships between them and their dependence on each other. It turns out that several 

equally possible hypotheses can also lead to the expression of natural laws; the 

mathematician then chooses those that lead us through the shortest path to the simplest 

and most manageable expressions. From there, the value of science: among several 

hypotheses, among countless hypotheses of equal logical value, we give preference to 

this, not because it is true but because it is the most convenient one. 

 

4 The philosophy of demonstration in geometry 

 

The reflections made in this part are mainly supported by Chauve (2006). The 

author asserts that the demonstrative approach, to which we owe the first geometric laws, 

remains unsatisfactory, because, although we understand that it is necessary to appeal to 

constructions and not to observations, the need for the construction that must be made to 

demonstrate does not appear. In this perspective, the author asserts that: 

With Euclid, geometry clarified the laws that the constructions that serve to 

demonstrate a geometric law obey. We move from the geometric laws we 

demonstrate to the laws of geometry with which we demonstrate. We explain 

the laws of geometric thinking, the laws of the demonstrative approach in 

geometry. This development of geometry has actually three aspects: it focuses 

on the fundamental principles and notions of geometry; clarifies the 
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mathematical meaning of geometry; brings up a philosophical presumption 

(CHAUVE, 2006, p. 6). 

 

He claims that the Euclidean elaboration of geometry leads to clarifying and 

codifying the very geometric thought, i.e., what makes it geometry. It makes intelligible 

not only the objects of geometric knowledge but also the knowledge of those objects. 

Until then, geometry studied the properties of geometric objects, spontaneously calling 

the consideration of points, lines, planes, etc., without asking about what this point, this 

line, this plane, this angle, etc. is. Euclides actualizes, clarifies and corrects these concepts 

and the fundamental rules that govern their use in constructions. Thus, the mathematical 

meaning of geometry becomes clearer, since we move from considering the figures where 

we saw the image of the geometric things, to considering magnitudes that can be 

constructed with a ruler and compass in space. The construction possibilities are 

expressed by postulates and the rules of reasoning about magnitudes, by axioms. Chauve 

(2006) argues that: 

These possibilities and rules that make up geometric thought come to the fore, 

so that it is the method that determines the object, that delimits the field of 

geometry and limits its demonstrative possibilities. Euclid’s geometry is 

impotent in the face of insoluble problems due to constructions using a ruler 

and compass: this is the case of the problem of Delos (god Apollo’s birthplace, 

an island where an altar twice as large was required to appease the gods. It is 

the problem of cube duplication), problem of the trisection of the angle and the 

problem of quadratures (Archimedes will dominate it by the method of 

exhaustion which is no longer the “application of areas” that characterizes 

Euclid’s geometry) (p.6, our translation). 

 

For Kant2 (1787, apud CHAUVE, 2006), geometry proceeds by “construction of 

conceptions,” that is, to demonstrate, it is necessary to proceed with constructions. To the 

definition of a geometric object, we must associate a construction, and it is from the 

dimensional configurations of the figure that we must reason, because if we reason based 

solely on the definition, to try to deduce something, we will achieve nothing. For example, 

we cannot deduce, from the triangle definition, the sum of the measures of its angles, 

without reasoning about the construction of the figure (example of figure 1). To 

demonstrate, we need to construct a figure; but to construct a figure, we must have a 

representation of the mathematical object, which is an a priori representation, which is 

not given to us by what we observe or what we find. It cannot be the empirical 

representation of the contour of a figure. It can only be the representation we have of him 

in space, that is, in “pure intuition,” as Kant says, in which the concrete things that we 

 
2 Emmaneul Kant (1787) . Critique de la Raison pure, introduction, trad. Jules Barni, revue par 

Archambault, éd. G. F. Flammarion. 
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can see in the space around us are disregarded, but where we represent the extension itself. 

This representation is the final condition of geometry. 

Kant (1787, apud CHAUVE, 2006) argues that axioms and postulates such that 

“the whole is greater than the part,” “between two points, passes only one line” etc., fall 

under a principle called by Kant the “axiom of intuition” and states that “all intuitions are 

extensive magnitudes” (one can only imagine something in the form of magnitude in 

space). 

This principle, although qualified as “mathematical,” is not itself an axiom of 

mathematics, it is, Kant specifies, “the foundation of the possibility of axioms” 

by virtue of which “these axioms themselves are not [...] admitted to the topic 

only because they can be represented in pure intuition. The properties of 

geometric objects are accessible only in pure intuition, that of space, the 

foundation of the laws that govern geometric construction procedures. This 

pure intuition controls acts of representation and is constitutive of the 

possibility and power that our mind has to have representations, therefore, 

geometry is based on a pure intuition that forces the researcher to submit to the 

fundamental requirements of representation. A condition is imposed on the 

surveyor’s speech: it is necessary that it is not only deductive but that it submits 

to the possibilities of representation. The demonstration requires 

representation (CHAUVE, 2006, p. 7, our translation). 

 

The author states that Euclides clearly identified the geometric thought underlying 

the demonstration by constructing figures, but he did not take that thought as an object of 

geometry. On the contrary, this is what Gauss, Bolyai, and Lobachevski (1935) will do. 

It is no longer a matter of demonstrating something using a postulate that commands a 

geometric construction, but of trying to demonstrate the very postulate that serves to 

demonstrate. The demonstration means are taken as a demonstration object, so that, in the 

end, it is the geometric demonstration that will eventually become the object of geometry. 

A new concept of geometry will be born, and we are witnessing the disconcerting 

appearance of a new geometry. Gauss calls it “non-Euclidean geometry.” It sets off with 

the idea that, starting from a point outside a line, there are several “non-secant” lines that 

do not cross that line. Lobatchevski (1935), for example, resuming the construction 

corresponding to the formulation of the fifth postulate, founded his thought in the 

following way, based on figure 8: 
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Figure 8: Illustration of the fifth postulate according to Lobatchevski (1935)  

 

Source: Chauve (2006, p. 8) 

 

Chauve (2006) comments on Lobatchevski’s ideas as follows: 

From a point A outside a line BC, we lowered the line AD perpendicular to 

that line. From A, we drew a line AE perpendicular to AD. At the right angle 

EAD, all lines that start at A toward C and E cut the DC line, such as AF; or 

others, such as AE, do not cut the DC line. And Lobatchevski adds: “In the 

uncertainty, if the perpendicular EA is the only straight line that does not cut 

the straight CD, we admit the possibility that there are still other lines, such as 

AG, that do not cross the straight CD, no matter how far they are extended.” 

What is the reason for this uncertainty that suggests that there may be other 

lines that do not cross the CD line? This is because, as we have pointed out, 

the fifth postulate does not formulate, like the others, a rule that expresses the 

possibility of carrying out a construction; rather, it formulates a rule that 

suddenly involves a statement about the result of a construction (the 

perpendicular AE will be the only one that will not cut DC) (p. 8, our 

translation). 

 

The development of this geometric idea about the possibility of building other 

lines gave rise, when it appeared, to a mathematical and philosophical interpretation that 

we can no longer admit. Chauve (2006) asserts that, from a mathematical point of view, 

Gauss saw in this geometry a “non-Euclidean geometry.”  

The term “non-Euclidean geometry” means that the refusal of Euclid’s 

postulate does not contradict the other Euclidean axioms and postulates, so that 

if non-Euclidean geometry were contradictory, so would Euclidean geometry. 

When we speak of non-Euclidean geometry, we simply mean that the 

Euclidean postulate of parallels is independent of the other postulates and 

axioms, and nothing more. So, from a philosophical point of view, we no 

longer ask ourselves whether the postulate about the uniqueness of the parallel 

is true or false: we no longer interfere with the truth or the imaginary character 

of the new geometry. This geometry forces us to abandon the very idea that 

geometry is a representation of the real or the imaginary space; that 

representation was pure intuition (CHAUVE, 2006, p. 9, our translation). 

 

It also ensures that in geometry, there is no representation of space, there is a 

structure of space. Geometry is actually an axiomatic in which we ignore all 

representation, and in which the word “space” designates a structure, i.e., a system of 

axioms and deductions. Axiomatizing a theory consists of rigorously formulating primary 

propositions that allow the theorems to be deduced without having to consider the nature 
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of the theory’s objects. Those propositions are called first “axioms,” but that word no 

longer has the restricted meaning Euclid gave it. Chauve (2006, p. 9) calls 

“demonstration” the pure deduction of the theorem of the axioms. It means that 

in those demonstrations, we disregard representations of geometric objects that 

seem to evoke the discourse of geometry or that would give us constructions 

in space. Those representations would be pure and a priori. Let us stick strictly 

to what we can deduce from the axioms according to the rules of the only 

logical-mathematical syntax of the geometric discourse. We must know that, 

when the geometer speaks of space, he/she speaks of a pure mathematical 

concept, that is, of a system of axioms and logical relations of the deductibility 

of propositions of those axioms.  

 

Chauve also notes that the geometer does not speak of pure intuition, that would 

be an a priori form of objective representation. He no longer sees the possibilities of pure 

constructions that authorize this intuitive form, but he considers the possibilities of pure 

deductions of propositions due to the logical form and syntax of the geometric discourse. 

In axiomatized geometry, deduction replaces construction. For what is constructible, we 

substitute what is deductible in the syntax of the geometric discourse. 

To reinforce this, we rely on Chauve’s (2006, p. 10) example, that replaces straight and 

parallel lines with the syntax of the expressions with which we speak of parallelism. He 

considers an E set with four elements E = {a, b, c, d} and the pairs (a, b), (a, c), (, d), (b, 

c), (b, d), (c, d). Chauve denotes the pairs by D, D´, etc. He use the word “plane” to 

designate the set E, the word “point” to designate its elements and the “line” or “straight 

line” for a pair of points. He formulated two axioms to give this set a structure: 

Axiom 1 (called incidence axiom): if the intersection of D and D´ contains at least two 

elements, then D = D’. Which means that through two “distinct” points “one and only 

one” straight line passes. When the intersection is a point, we can use the expression 

“secant lines.” 

Axiom 2 (axiom of parallelism): whatever D, if x (x being an element of E) does not 

belong to D, then there is one and only one D´, such that x belongs to D´ and the 

intersection of D and D´ is empty. That is, by a “point” x “outside” of a “line” D, there is 

one and only one D´ line parallel to D. 

In other words, in the case of the “4-point plane,” we can use “straight lines” 

and “parallelism” in the sense of Euclid. It is certainly a strange “plane” that 

has no extension, strange “points” that are nowhere in space, strange “straight 

lines” that are not straight and that have no distance or length. But the strangest 

thing is that what we said about those strange things is exactly what is said 

about the plane, points, lines when we talk about parallelism. And what we say 

is not what we imagine when we speak. Therefore, we have the syntax of 

expressions with which we can speak of points, lines and parallels, but without 

having to imagine a geometric construction in space with straight lines that we 

draw, that intersect or extend to infinity without being interpreted. Not only do 

we not need to imagine such a construction, but we cannot imagine it either: in 
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the “4-point plane,” the “plane “has no longer much to do with the 

representation of a flat surface, any more than “straight lines” with straight 

traces (CHAUVE, 2006, p. 10, our translation). 

 

However, the axioms that were given by the author constitute well in geometric 

discourse the syntax that makes it possible to speak of parallelism and to which Euclidean 

reasoning involving parallelism can refer. “The geometric thought of parallelism” is not 

in what I represent when I speak of parallel lines, but in what I say when I speak of it. It 

is in the syntax of the logical-conjunction of what I say. There is no question that the 

terms “straight line” and “point” evoke geometric representations that lead to the non-

recognition of this syntax of the geometric discourse. 

It just means that the representation of the line we have in mind - a straight line 

- carries other structures: order, measure (length), continuity. But, on the one 

hand, they still are and will always be structures to which this representation is 

reduced and, on the other hand, we do not need those structures to reason about 

the parallelism of the lines. To be convinced, it will be necessary to correct, 

rectify, purify, specify, reorganize the Euclidean discourse, classify the 

“axioms,” delimit precisely the field of the propositions to which they refer 

and determine exactly how they intervene in the manifestations (CHAUVE, 

2006, p. 11, our translation). 

 

The author asserts that this work was done by David Hilbert (1899), in The 

Foundations of Geometry, where he presented the first rigorous axiomatization of 

Euclid’s geometry. It is he who, to make his students understand that in an axiomatized 

geometry, structure replaces representation, said as if joking, that “we should be able to 

speak of geometry, tables, chairs, and beer mugs, instead of points, straight lines, and 

planes.” 

Hilbert (1899 apud CHAUVE, 1990, p. 11) explains the “general requirements 

and conditions that must be satisfied by solving a mathematical problem.” He was trying 

to explain what mathematical reasoning should be, that is, the demonstration. In a 

demonstration, “the solution [...] must be obtained by a finite number of conclusions and 

must be based on a finite number of hypotheses provided by the very problem and 

grounded in each case with precision” (CHAUVE, 1990, p. 11). Thus, the demonstration, 

in its rigor, requires a “logical deduction by means of a finite number of conclusions.” 

This idea of demonstrative rigor meets an intellectual requirement that goes beyond the 

domain of mathematics. For Hilbert (1899), it represents a philosophical idea: the rigor 

in the demonstration “corresponds, he says, to a general philosophical need of our 

understanding.” 

Chauve (2006) states that assuming a finite number and making a finite number 

of deductions, means, when facing a problem, clarifying and formulating exactly, in 
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purely logical-mathematical terms, the propositions that make it possible to solve the 

problem, that is, that allow us to proceed in a purely deductive manner, leading to the 

conclusion in a finite number of deductions. In geometry, for example, it will be necessary 

that the figures and constructions that we used to make be analyzed through the rules of 

the logical-mathematical structures that are “the basis of these figures,” i.e., they must be 

analyzed in the light of the proposals that must be formulated, regardless of their 

application in figures or use in constructions. 

That is why Hilbert emphasizes that, particularly in geometry, where 

mathematical notions are involved in figures, “a rigorous axiomatic discussion 

of its intuitive content is absolutely necessary.” Besides, once these structures 

are highlighted, and axioms are given, it is a matter of proceeding with a finite 

number deduction, that is, the deductions will consist of the application of 

procedures that have an end and effectively lead to a given result. In saying 

this, Hilbert has not yet realized that he is making a demonstration (deduction 

from theorems of axioms), a numerical procedure as we are used to in 

calculations of elementary arithmetic of integers (CHAUVE, 2006, p. 12). 

 

From a philosophical point of view, the requirement of demonstrative rigor 

represents, for Hilbert, a general law of our understanding, i.e., all questions that arise 

from our understanding are likely to be resolved by it. In mathematics, this law means 

that, for any problem, we must be able to obtain the solution by demonstration or 

demonstrate the impossibility of the solution from the assumptions that are given or 

formulated. Hilbert (1899, apud CHAUVE, 2006, p. 12) says: “Any mathematical 

problem must be focused on a rigorous solution, either by a direct answer to the question 

or by demonstrating the impossibility of solving it, that is, the failure of any attempt of 

resolution.” The demand for rigor in reasoning is thus imposed on us by the conviction 

that any problem can be solved. This belief, which goes beyond the field of mathematics, 

expresses “a philosophical need.” 

The author assures that to meet this requirement, it will be necessary not only to 

axiomatize mathematical theorems but also to reduce their demonstrative approaches to 

“finitist” procedures, as Hilbert says, i.e., a mode of thought considered fundamental and 

that must be the way that it works in every theory and every mathematical reasoning in 

the whole domain of demonstration. He states that the  

Finitist reasoning rests on a finite number of steps and finite data, for example, 

on specific numbers or finite collections of numbers, but it never introduces 

the consideration of the infinite totality, for example, that of the infinite set of 

numbers or the infinite set of decimal places of an irrational number. Such a 

procedure is comparable to the one applied in calculations when, for example, 

addition or multiplication operations are carried out. If we reduce the 

mathematical discourse to the steps of a finitist thought, any mathematical 

theory can become a system where the deduction of propositions will take the 

form of a calculation procedure (CHAUVE, 2006, p. 13). 
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Is it mathematically possible? Hilbert (1899) thought so. Axiomization, in fact, 

has shown us that a theory can be presented as a demonstrative system in which theorems 

are deduced from axioms according to the pure rules of the logical-mathematical syntax 

of expressions. In this system, there are only successive sequences of propositions that 

consist of logical-mathematical signs - in other words, they are formulas - as if it were a 

type of algebra. A formula is a series of signs; a demonstration is a series of formulas, 

and the procedures to write these signals are codified. Hilbert (1925, apud CHAUVE, 

2006, p. 14) summarizes this by explaining that instead of mathematical theories we have 

“a stock of formulas composed of mathematical and logical signals linked one after 

another according to defined rules.” In this system, a demonstration “constitutes a 

concrete object that can be visualized exactly like a number,” so that to reason and 

demonstrate it is enough to apply procedures comparable to those applied to the numbers 

in the calculations. 

By transforming mathematical theories into formal systems in which 

demonstrative approaches take the form of calculation procedures, Hilbert 

thinks that we can respond to the injunction dictated by the “philosophical 

need” to know that any problem can be solved. To be able to argue with all 

rigor the formalism that governs the demonstrations of a formal system, Hilbert 

demands that we stick to effective methods and finitist reasoning. This 

mathematical study of the formal systems of mathematics is called, for Hilbert, 

metamathematics, and, since it aims at the demonstrative possibilities of the 

systems, it will be a “demonstration theory” (CHAUVE, 2006, p. 14). 

 

This is the task that the Göttingen school proposes to carry out from 1922 onwards 

and which is called “the Hilbert program.” It is a question of formalizing mathematical 

theories, of developing the theory of demonstration, that is, the metamathematical study 

of the properties of formal systems. At the Bologna International Congress, in 1928, 

Hilbert thought he had achieved the goal and explained the properties that, in his view, 

should have formal systems (in that sense, those properties are, therefore, standards for 

any formal system in which demonstrations are finitist and effective procedures). Those 

properties are consistency, integrity, and decidability. Chauve (2006, p. 15) presents it in 

the following way, which seems to clarify the idea better and which may be connected to 

Hilbertian formulations: 

- Consistency (called syntax): whatever formula A in the system, we never 

have A is demonstrable and not A is demonstrable. We can consider that it is 

in fact a norm, a property that we expect from a formal system and without 

which a system would cease to be one. 

- Completeness (called syntactic): we always have A demonstrable or A non-

demonstrable (in this case, we say that A is refutable). If this condition is not 

met, we say that A is “undecided.” 
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- Decidability: it is always possible to “decide” whether A is demonstrable or 

whether A is not demonstrable. “Deciding” means: applying an effective 

procedure. If this condition is not satisfied, we will say that A is “undecidable.” 

 

The author asserts that if these three conditions are satisfied, we can completely 

dominate a system’s field of demonstrations. From a formula of system A, we can decide 

whether it is demonstrable and, in this case, we will know that its negation is not, if it is 

not demonstrable, and in this case, we will know that its negation is (by completeness). 

We will have responded to the requirement of demonstrability that expresses a 

philosophical need:”we will know!” says Hilbert, and expects that the formal systems 

will give mathematics the chance to end ignorance. 

Hilbert’s conviction (1899, apud CHAUVE, 2006, p. 16) is that this way of 

thinking does not govern only the field of mathematical demonstrations; it governs all 

thought, when he says that “the fundamental philosophical conception [...] requires 

mathematics as well as all thought.” 

Kurt Gödel (1930) and Alan Turin (1936, apud CHAUVE, 2006) showed that the 

Hilbert program is unfeasible. Gödel shows that although the formal system of arithmetic 

is consistent, it is not complete. Turing, in turn, in his memoirs entitled On Computable 

Numbers, establishes that the “problem of Hilbert’s decision has no solution” through 

effective methods and finitist reasoning. Chauve (2006) ensures that this means that there 

are formal systems that, although consistent, will not have the property of being complete 

or decidable. This does not exclude that we build formal systems that those properties 

will have (for example, that of “calculating propositions” in logic). Still, they will not be 

sufficient to formalize the arithmetic and all mathematical theories that we constructed 

based on arithmetic (the theory of real numbers, the theory of functions, and all analysis, 

consequently geometry). It invalidates the Hilbertian idea that mathematical theories 

come from fundamental and effective approaches to a finitist thought that could be 

established as a mathematically supreme authority, judging the demonstrative power of 

mathematics. 

 

5 Conclusions 

 

The mathematical demonstration can be seen as an argument by which someone 

is convinced or convinces others that something is true; therefore, it may seem difficult 

to go beyond the epistemic conversation about explanatory proof. However, although the 

content of any specific demonstration is the fruit of a person’s epistemic work, it can be 
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separated as an object independent of a particular mind. Others can read this 

demonstration and be convinced by it. What leads us to the question of knowing to show 

why a theorem is true is a characteristic of the very demonstration or communicative acts, 

either text or representations (BALACHEFF, 2019). 

This must be compared with the criterion of recognizing the heuristic or epistemic 

character of an argument “[...] due to the existence of a theoretical organization of the 

field of knowledge and representations in which the argument occurs, or the absence of 

such a theoretical organization.” (DUVAL, 1992, p. 51). In this perspective, “A heuristic 

argument requires the existence of a theoretical organization of the field of knowledge 

and representations in which the argument occurs” and “that is capable of understanding 

or producing a justification relationship between propositions that is of a deductive nature 

and not just of a semantic nature” (DUVAL, 1992, p. 52). 

Thus, the distinction between rhetorical and heuristic arguments is limited to 

the assessment of the epistemic value and the ontological value of the 

statements and their relationships. We can then advance that an argument will 

be admissible in the sense of mathematics if the epistemic value of its 

statements is conditioned by its ontological value; it is this criterion that will 

allow it to recognize the status of the proof in mathematics. The standardized 

structure of the demonstrations is the technical means of this assessment 

(BALACHEFF, 2019, p. 8). 

 

The validation rules in mathematics stand out in relation to those of other 

disciplines because mathematicians do what they do because their objects are what they 

are at the time of their activities. The question of rigor is not abstract; it is a question 

whose possibility and nature of development depend both on epistemic conditions, in the 

Piagetian sense, and on technical means (representations and their treatments). 

(BALACHEFF, 2017) 

The mutual dependence on conceptualization, representation systems, and 

validation systems makes it necessary to distinguish and characterize different types of 

proof, to be able to model possible developments and their conditions. The history of 

mathematics invites us to expand this perspective. If cognitive development is one of the 

determinants of the levels of validation – we have known this since Jean Piaget’s work -

, they are not the only ones. We must go beyond cognitive issues (Balacheff, 2019), taking 

into account, at least, the specific economy of validation situations and the state of 

knowledge. 
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